RUS  ENG
Full version
SEMINARS

Meetings of the St. Petersburg Mathematical Society
October 21, 2003, St. Petersburg


Hyperbolic virtual polytopes and a uniqueness hypothesis for convex surfaces

G. Yu. Panina

Abstract: We describe and discuss counterexamples to the old hypothesis: if the principal curvature radii of a smooth 3-dimensional body K are ewerywhere separated by a constant C, then K is a ball of radius C.
The talk is based on papers by A. V. Pogorelov, Y. Martinez-Maure, and the speaker.


© Steklov Math. Inst. of RAS, 2025