RUS  ENG
Full version
SEMINARS

Cohomological geometry of differential equations
February 10, 2021 19:20, Moscow, online, for the access link please contact seminar@gdeq.org


On monotonic pattern in periodic boundary solutions of cylindrical and spherical Kortweg-de Vries-Burgers equations

A. V. Samokhin



Abstract: We studied, for the Kortweg-de Vries Burgers equations on cylindrical and spherical waves, the development of a regular profile starting from an equilibrium under a periodic perturbation at the boundary.
The regular profile at the vicinity of perturbation looks like a periodical chain of shock fronts with decreasing amplitudes. Further on, shock fronts become decaying smooth quasi peri odic oscillations. After the oscillations cease, the wave develops as a monotonic convex wave, terminated by a head shock of a constant height and equal velocity. This velocity depends on integral characteristics of a boundary condition and on spatial dimensions.
The explicit asymptotic formulas for the monotonic part, the head shock and a median of the oscillating part are found.

Language: English


© Steklov Math. Inst. of RAS, 2025