Abstract:
An embedding of a code is a mapping that preserves distances between codewords. We prove that any code with code distance $\rho$ and code length $d$ can be embedded into an MDS code with the same code distance and code length but with larger alphabet.
References
-
T. Evans, “Embedding incomplete Latin squares”, Amer. Math. Monthly, 67:10 (1960), 958–961
-
A. B. Cruse, “On the finite completion of partial Latin cubes”, J. Combinatorial Theory Ser. A, 17:1 (1974), 112–119
-
C. C. Lindner, “Embedding orthogonal partial Latin squares”, Proc. Amer. Math. Soc., 59:1 (1976), 184–186
-
D. M. Donovan, E. S. Yazici, “A polynomial embedding of pairs of orthogonal partial Latin squares”, J. Combin. Theory Ser. A, 126 (2014), 24–34
-
D. M. Donovan, M. Grannell, E. Sule Yazici, “Constructing and embedding mutually orthogonal Latin squares: reviewing both new and existing results”, Comment. Math. Univ. Carolin., 61:4 (2020), 437–457
-
D. S. Krotov, E. V. Sotnikova, “Embedding in $q$-ary $1$-perfect codes and partitions”, Discrete Math., 338:11 (2015), 1856–1859
-
J. Denes, A. D. Keedwell, Latin squares. New development in the theory and applications, Annals of Discrete Mathematics, 46, North-Holland, 1991
|