|
VIDEO LIBRARY |
|
Quantisation of free associative dynamical systems A. V. Mikhailov University of Leeds |
|||
Abstract: Traditional quantisation theories start with classical Hamiltonian systems with variables taking values in commutative algebras and then study their non-commutative deformations, such that the commutators of observables tend to the corresponding Poisson brackets as the (Planck) constant of deformation goes to zero. I am proposing to depart from dynamical systems defined on a free associative algebra To illustrate this approach I'll consider the quantisation problem for the Volterra family of integrable systems. In particular, I will show that odd degree symmetries of the Volterra chain admit two quantisations, one of them is a standard deformation quantisation of the Volterra chain, and another one is new and not a deformation quantisation. The periodic Volterra chain admits bi-Hamiltonian and bi-quantum structures [CMW22]. The method of quantisation based on the concept of quantisation ideals proved to be successful for quatisation of stationary Korteveg-de–Vries hierarchies [BM2021]. The Toda hierarchy also admits bi-quantum structures and non-deformation quantisation. Language: English References
|