|
SEMINARS |
V. I. Smirnov Seminar on Mathematical Physics
|
|||
|
Rotating Spirals in segregated reaction-diffusion systems S. Terracini Dipartimento di Matematica, Università degli Studi di Torino |
|||
Abstract: We give a complete characterization of the boundary traces \begin{align*} \begin{cases} \partial_t u_i-\Delta u_i=\mu u_i-\beta u_i\sum_{j\neq i} a_{ij}u_j& \text{ in } \Omega \times\mathbb{R}^+\\ u_i=\varphi_i & \text{ on } \partial\Omega \times\mathbb{R}^+\\ u_i(x,0)=\varphi_i(x) & \text{ for } x \in\Omega \end{cases} \end{align*} as It is a joint work with A. Salort, G. Verzini and A. Zilio. References [1] A. Salort, S. Terracini, G. Verzini, and A. Zilio., Rotating Spirals in segregated reaction-diffusion systems, preprint, 2022. [2] S. Terracini, G. Verzini, and A. Zilio. Spiraling asymptotic profiles of competition-diffusion systems. Comm. Pure Appl. Math., 72(12):2578–2620, 2019. Language: English |