RUS  ENG
Full version
SEMINARS

Functional analysis and its applications
September 14, 2023 08:30


On Kasparov-type homotopy functors for $C^\ast$-algebras (PhD dissertation discussion)

G. S. Makeevab

a Lomonosov Moscow State University
b V. I. Romanovskiy Institute of Mathematcs of the Academy of Sciences of Uzbekistan, Tashkent

Abstract: Many constructions involving asymptotic homomorphisms in Connes-Higson $E$-theory can be lifted at the level of natural transformations between endofunctors of $C^\ast$-algebras. For such natural transformations we introduce the notion of homotopy and define a category with objects good enough endofunctors and morphisms homotopy classes of natural transformations. Objects of this category induce generalized homotopies of $\ast$-homomorphisms, which can be used to obtain an unsuspended description of $E$-theory and $E$-theoretical analog of $C^\ast$-algebra extension groups. The machinery can also be applied for computing $K$-homology.

Website: https://us02web.zoom.us/j/3078301000


© Steklov Math. Inst. of RAS, 2024