RUS  ENG
Full version
SEMINARS

Hamiltonian systems and statistical mechanics
October 16, 2023 16:30, Moscow, MSU, auditorium 14-02


О полном разделении переменных в уравнении Гамильтона-Якоби для геодезических.

M. O. Katanaev



Abstract: Рассматривается (псевдо)риманово многообразие произвольной размерности. Проблема Штеккеля: описать все метрики, допускающие полное разделение переменных в уравнении Гамильтона-Якоби для геодезических. Эта задача было решена для метрик произвольной сигнатуры при условии, что все диагональные компоненты метрики отличны от нуля. В частности, для римановых положительно определенных метрик. Однако вопрос остался открытым для метрик, имеющих нули на диагонали. Это возможно только для индефинитных метрик. Такие метрики важны в моделях гравитации, где метрика имеет лоренцеву сигнатуру. В докладе предлагается полное решение проблемы Штеккеля, включая метрики, имеющие нули на диагонали. Доказанные теоремы конструктивны. В качестве примера перечислены все метрики, допускающие полное разделение переменных на многообразиях двух (3 класса), трех (6 классов) и четырех (10 классов) измерений.


© Steklov Math. Inst. of RAS, 2024