RUS  ENG
Full version
SEMINARS



Maximum $m-cv$ and $m-psh$ functions

R. A. Sharipova, M. B. Ismoilovb

a Urgench State University named after Al-Khorezmi
b National University of Uzbekistan named after M. Ulugbek, Tashkent

Abstract: The $m$-convex functions, $(m-cv)$ and the $m$-plurisubharmonic functions $(m-psh)$ are the real analogue in ${{\mathbb{R}}^{n}}$ of strongly $m$-subharmonic $(s{{h}_{m}})$ functions in the complex space ${{\mathbb{C}}^{n}}.$ In the report we will establish one very useful connection between $(m-cv)$ and $(s{{h}_{m}})$ functions. Next, using the rich properties of $(s{{h}_{m}})$ functions, we will study $(m-cv)$ and $(m-psh)$ functions.

Website: https://us02web.zoom.us/j/8022228888?pwd=b3M4cFJxUHFnZnpuU3kyWW8vNzg0QT09


© Steklov Math. Inst. of RAS, 2024