RUS  ENG
Full version
VIDEO LIBRARY

Contemporary methods in approximation theory and complex analysis
November 14, 2023 12:30, Moscow, Steklov Mathematical Institute of RAS (8 Gubkina)


Mellin transformation in the theory of algebraic equations. Lecture 4

I. A. Antipova

Siberian Federal University, Krasnoyarsk


https://youtu.be/6onLymo88hM


References
  1. P. Flajolet, X. Gourdon, P. Dumas, “Mellin transforms and asymptotics: Harmonic sums”, Theoret. Comput. Sci., 144 (1995), 3–58  crossref  zmath
  2. Gelfand, I. M., Kapranov, M. M., Zelevinsky, A. V., Discriminants, Resultants, and Miltidimensional Determinants, Birkhauser, 1994  crossref
  3. de la Cruz, L., “Feynman integrals as A-hypergeometric functions”, J. High Energ. Phys., 123 (2019)  zmath
  4. H. Mellin, “Résolution de l'équation algébrique générale $\grave{a}$ l'aide de la fonction $\Gamma$”, C.R. Acad. Sci., 172 (1921), 658–661  zmath
  5. I. A. Antipova, “Obrascheniya mnogomernykh preobrazovanii Mellina i resheniya algebraicheskikh uravnenii”, Matem. sb., 198:4 (2007), 3–20  mathnet  crossref
  6. I. A. Antipova, E. N. Mikhalkin,, “Analiticheskie prodolzheniya obschei algebraicheskoi funktsii s pomoschyu ryadov Pyuizo”, Analiticheskie i geometricheskie voprosy kompleksnogo analiza, Sbornik statei,, Trudy MIAN, 279, MAIK «Nauka/Interperiodika», M., 2012, 9–19  mathnet  zmath
  7. M. Passare, A. Tsikh, “Algebraic equations and hypergeometric series”, The Legasy of N.H. Abel, Springer-Verlag, 2004, 563–582  crossref

Series of lectures


© Steklov Math. Inst. of RAS, 2024