RUS  ENG
Full version
SEMINARS

Contemporary Problems in Number Theory
March 21, 2024 12:45, Moscow, Steklov Mathematical Institute, Room 530 (8 Gubkina)


Maximal Operators and Restriction Bounds for Weyl Sums

I. E. Shparlinski

University of New South Wales, School of Mathematics and Statistics



Abstract: We describe several recent results on so called maximal operators on Weyl sums
$$ S(u;N) =\sum_{1\le n \le N} \exp(2 \pi i (u_1n+…+u_dn^d)), $$
where $u = (u_1,...,u_d) \in [0,1)^d$. Namely, given a partition $ I \cup J \subseteq \{1,…,,d\}$, we define the map
$$ (u_i)_{i \in I} \mapsto \sup_{u_j,\, j \in J} |S(u;N)| $$
which corresponds to the maximal operator on the Weyl sums associated with the components $u_j$, $j \in J$, of $u$.
We are interested in understanding this map for almost all $(u_i)_{i \in I} $ and also in the various norms of these operators. Questions like these have several surprising applications, including outside of number theory, and are also related to restriction theorems for Weyl sums.
ZOOM meeting ID: 983 9230 2089 Passcode: a six digit number $N=p_4\cdot p_{50}\cdot p_{101}$ where $p_j$ is the j-th prime number.

Language: English


© Steklov Math. Inst. of RAS, 2024