RUS  ENG
Full version
VIDEO LIBRARY

Mathematical and Theoretical Physics, dedicated to Ludwig Faddeev
May 28, 2024 17:30, St. Petersburg, St. Petersburg Department of Steklov Mathematical Institute of the Russian Academy of Sciences


Homogenization of the periodic Schödinger-type equations

T. A. Suslina

Saint Petersburg State University


https://youtu.be/HBX0SCt2MlI

Abstract: In $L_2(\mathbb{R}^d;\mathbb{C}^n)$, we consider a selfadjoint strongly elliptic second-order differential operator ${\mathcal A}_\varepsilon$. It is assumed that the coefficients of ${\mathcal A}_\varepsilon$ are periodic and depend on ${\mathbf x}/\varepsilon$, where $\varepsilon>0$ is a small parameter. We study the behavior of the operator exponential $e^{-i{\mathcal A}_\varepsilon\tau}$ for small $\varepsilon$ and $\tau \in \mathbb{R}$. The results are applied to study the behavior of the solution of the Cauchy problem for the Schrödinger-type equation $i\partial_\tau{\mathbf u}_\varepsilon({\mathbf x},\tau)=({\mathcal A}_\varepsilon{\mathbf u}_\varepsilon)({\mathbf x},\tau)$ with the initial data from a special class.

Language: English


© Steklov Math. Inst. of RAS, 2024