RUS  ENG
Full version
VIDEO LIBRARY

The Sixth International Conference "Supercomputer Technologies of Mathematical Modelling" (SCTeMM'25)
July 17, 2025 12:50, Moscow, Steklov Mathematical Institute, Conference hall, 9th floor (Gubkina 8)


Краевые задачи теории упругости в областях с тонкими включениями

E.M. Rudoy

Lavrentyev Institute of Hydrodynamics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk


https://vkvideo.ru/video-222947497_456239117
https://youtu.be/h0TaiNY9PyM


References
  1. Khludnev A., Leugering G. On elastic bodies with thin rigid inclusions and cracks. Math. Methods Appl. Sci. 2010. V. 33. P. 1955–1967.
  2. Popova T. S. Numerical solution of the equilibrium problem for a two-dimensional elastic body with a thin semirigid inclusion. Mathematical Notes of NEFU. 2021. V. 28. P. 51–66.
  3. Lazarev N., Semenova G., Efimova E. Equilibrium problem for an inhomogeneous two-dimensional elastic body with two interacting thin rigid inclusions. Journal of Computational and Applied Mathematics. 2024. V. 4388. 115539.
  4. Furtsev A., Itou H., Rudoy E. Modeling of bonded elastic structures by a variational method: Theoretical analysis and numerical simulation. International Journal of Solids and Structures. 2020. V. 182–183. P. 100–110.
  5. Kazarinov N., Rudoy E., Slesarenko V., Shcherbakov V. MMathematical and Numerical Simulation of Equilibrium of an Elastic Body Reinforced by a Thin Elastic Inclusion. omputational Mathematics and Mathematical Physics. 2018. V. 58. P. 761–774.


© Steklov Math. Inst. of RAS, 2025