RUS  ENG
Full version
VIDEO LIBRARY

The Sixth International Conference "Supercomputer Technologies of Mathematical Modelling" (SCTeMM'25)
July 17, 2025 17:20, Moscow, Steklov Mathematical Institute, Conference hall, 9th floor (Gubkina 8)


Численное моделирование процессов газовой динамики с применением одной адаптивной искусственной вязкости для полностью консервативных разностных схем

H. Zhang

Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow region


References
  1. Samarskii, A. A., Popov, I. P. (1980). Difference methods for solving problems of gas dynamics. Moscow Izdatel Nauka.
  2. Yu.P. Popov, A.A. Samarskii, Completely conservative difference schemes, USSR Computational Mathematics and Mathematical Physics, Volume 9, Issue 4, 1969, Pages 296-305, ISSN 0041-5553.
  3. I.V. Popov, I.V. Fryazinov, Adaptive artificial viscosity method numerical solution of equations of gas dynamics, Moscow, Krasand, 2014 (In Russ).'
  4. M. E. Ladonkina, Yu. A. Poveschenko, H. Zhang, “Comparative analysis of some iterative processes for realization of fully conservative difference schemes for gas dynamics equations in Euler variables”, Zhurnal SVMO, 26:4 (2024), 404–423 (In Russ).
  5. B Einfeldt, C.D Munz, P.L Roe, B Sjögreen, On Godunov-type methods near low densities, Journal of Computational Physics, Volume 92, Issue 2, 1991, Pages 273-295, ISSN 0021-9991.
  6. Gary A Sod, A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, Journal of Computational Physics, Volume 27, Issue 1, 1978, Pages 1-31, ISSN 0021-9991.


© Steklov Math. Inst. of RAS, 2025