|
SEMINARS |
Seminar on Complex Analysis (Gonchar Seminar)
|
|||
|
The third-order differential equation for Hermite–Padé polynomials S. P. Suetin Steklov Mathematical Institute of the Russian Academy of Sciences |
|||
Abstract: We shall prove the following result. Theorem. Let function $$ \bigl(Q_{n,0}+Q_{n,1}f+Q_{n,2}f^2\bigr)(z) =O\biggl(\frac1{z^{2n+2}}\biggr),\quad z\to\infty. $$ Then the polinomial \begin{align} (z^2-1)^2w''' &+6(z^2-1)(z-\alpha)w''\notag\\ &-\bigl[3(n-1)(n+2)z^2+12\alpha z-(3n(n+1)+8\alpha^2-10)\bigr]w'\notag\\ &+2\bigl[n(n^2-1)z+\alpha(3n(n+1)-8)\bigr]w=0. \notag \end{align} |