RUS  ENG
Full version
SEMINARS



On the size of generators of solutions of some diophantine equations

Marc Hindryab

a Université Paris VII – Denis Diderot
b Laboratoire J.-V. Poncelet, Independent University of Moscow

Abstract: We will discuss analogies between the group of units of a number field (e.g. integral solutions of the equation $x^2-dy^2=1$) and the group of rational points of an abelian variety over a global field (e.g. rational solutions of the equation $y^2=x^3+ax+b$). Both groups are finitely generated and there is a natural notion of size or height, so the central question is to estimate the minimal size of a set of generators.


© Steklov Math. Inst. of RAS, 2024