|
СЕМИНАРЫ |
Общеинститутский семинар «Математика и ее приложения» Математического института им. В.А. Стеклова Российской академии наук
|
|||
|
Аппроксимации Паде, ортогональные многочлены и С. П. Суетин |
|||
Аннотация: Задача эффективного аналитического продолжения (суммирования) заданного степенного ряда за пределы круга его сходимости – классическая задача комплексного анализа. В докладе планируется рассказать о методах исследования этой задачи, основанных на использовании диагональных аппроксимаций Паде и их различных обобщений. Основной класс рассматриваемых функций – многозначные аналитические функции с конечным числом особых точек в комплексной плоскости. В таком классе функций знаменатели обобщенных аппроксимаций Паде (АП) оказываются неэрмитово ортогональными многочленами с переменным (зависящим от номера многочлена) весом. Распределение нулей этих многочленов оказывается возможным охарактеризовать с помощью экстремальных теоретико-потенциальных задач, рассматриваемых в некотором классе компактов, «допустимых» для заданной многозначной функции. Экстремальный компакт единствен, состоит из конечного числа аналитических дуг (замыканий критических траекторий некоторого квадратичного дифференциала) и вполне характеризуется определенным свойством симметрии ( |