|
СЕМИНАРЫ |
Семинар Добрушинской лаборатории Высшей школы современной математики МФТИ
|
|||
|
Устойчивость нелинейных марковских процессов А. А. Владимиров, С. Б. Шлосман, А. Н. Рыбко Институт проблем передачи информации им. А. А. Харкевича РАН, г. Москва |
|||
Аннотация: Большие однородные системы с очередями моделируются как марковские процессы специальной структуры, включающей целочисленный параметр N (кратность сети). Кратная сеть состоит из конечного числа одинаковых элементов (конечных подсетей), связанных между собой общими потоками клиентов. Рассматривается максимально симметричная ситуация, когда все элементы равноправны (среднее поле). Тогда в пределе, при N, стремящемся к бесконечности, возникает детерминированная динамическая система для мер на счетном конфигурационном пространстве. В отличие от обычного марковского процесса, эта система нелинейная (квадратичная в нашем случае) и ее поведение может иметь качественные особенности, не свойственные марковским процессам на счетных множествах. Например, кроме устойчивых неподвижных точек, могут возникать предельные циклы или другие компактные аттракторы. В некоторых ситуациях, тем не менее, удается доказать асимптотическую устойчивость нелинейного марковского процесса. Мы сделаем это для класса открытых сетей с внешними потоками малой интенсивности с помощью специальной склейки двух экземпляров процесса. |