RUS  ENG
Полная версия
СЕМИНАРЫ

Современные проблемы теории чисел
4 декабря 2014 г. 12:45, г. Москва, МИАН, комн. 530 (ул. Губкина, 8)


Разбиение n-мерного евклидова пространства гиперплоскостями, случайные матрицы и пороговые функции алгебры логики

Ю. А. Зуев

Аннотация: С помощью открытого автором свойства разбиений пространства гиперплоскостями и результата Одлыжко о случайных матрицах показано, что число пороговых булевых функций есть $2^{n^2(1+o(1))}$. А в случае справедливости гипотезы Кана, Комлоша и Семереди их число асимптотически равно $2\frac{2^{n^2}}{n!}$.


© МИАН, 2024