RUS  ENG
Полная версия
СЕМИНАРЫ

Семинар «Глобус» (записи с 2011 года)
4 декабря 2014 г. 15:40, г. Москва, конференц-зал НМУ (Москва, Большой Власьевский пер., 11)


The ternary Goldbach conjecture

H. A. Helfgott

Аннотация: The ternary Goldbach conjecture (1742) asserts that every odd number greater than 5 can be written as the sum of three prime numbers. Following the pioneering work of Hardy and Littlewood, Vinogradov proved (1937) that every odd number larger than a constant C satisfies the conjecture. In the years since then, there has been a succession of results reducing C, but only to levels much too high for a verification by computer up to C to be possible (C>10^1300). (Works by Ramare and Tao solved the corresponding problems for six and five prime numbers instead of three.) My recent work proves the conjecture. We will go over the main ideas of the proof.
Доклад пройдёт в рамках конференции "Zeta Functions 5".


© МИАН, 2024