|
СЕМИНАРЫ |
Общеинститутский семинар «Математика и ее приложения» Математического института им. В.А. Стеклова Российской академии наук
|
|||
|
Алгебры операторов Лакса и интегрируемые системы О. К. Шейнман |
|||
Аннотация: Алгебры операторов Лакса введены в [1] в связи с понятием оператора Лакса со спектральным параметром на римановой поверхности, ранее введенным И. М. Кричевером. Они представляют собой алгебры токов на римановых поверхностях со значениями в полупростых и редуктивных алгебрах Ли, и тесно связаны с конечномерными интегрируемыми системами, такими как системы Хитчина, Калоджеро–Мозера, классические волчки, задачи обтекания твердого тела. Во многих отношениях алгебры операторов Лакса аналогичны алгебрам Каца-Муди. Нескрученные алгебры Каца–Муди являются алгебрами операторов Лакса на римановой сфере с отмеченными точками Вплоть до конца 2013 года алгебры операторов Лакса были определены и построены только для классических алгебр Ли над В докладе будет дано общее определение алгебр операторов Лакса в терминах градуировок полупростых алгебр Ли, сформулированы их основные свойства. Будет установлена связь с параметрами Тюрина голоморфных расслоений на римановых поверхностях. Мы планируем сформулировать общий подход к построению конечномерных интегрируемых систем, основанный на том же круге идей. Список литературы
|