Аннотация:
Подход к построению приближённых решений дифференциальных уравнений, предложенный в работах Бубнова и Галёркина, и впоследствии развитый Петровым, оказал большое влияние на развитие теории уравнений в частных производных и породил много методов количественного анализа. Метод Галёркина стимулировал создание концепции обобщённого решения и использовался для доказательства существования решения ряда задач математической физики.
Современные методы вычислительной математики широко используют идеи метода Галёркина, которые в той или иной форме являются основой метода конечных элементов, метода конечных объемов, разрывного метода Галеркина, двойственного смешанного метода, и др. При этом основными теоретическими проблемами, связанными с этими и другими близкими методами являются доказательство сходимости к точному решению и получение оценок погрешности. В докладе даётся обзор основных достижений в этой области и обсуждаются новые нерешённые проблемы, связанные с количественным анализом уравнений в частных производных.