|
СЕМИНАРЫ |
Общеинститутский математический семинар Санкт-Петербургского отделения Математического института им. В. А. Стеклова РАН
|
|||
|
Теоремы типа Римана-Роха И. А. Панин |
|||
Аннотация: В первой части доклада предполагается (1) напомнить формулировку классической теоремы Римана-Роха для комплексных алгебраических кривых (они же — римановы поверхности, они же сферы с несколькими ручками) и для комплексных алгебраических поверхностей (вещественная размерность таких многообразий, конечно, равна 4), (2) разобрать пару примеров, показывающих, что в простейших случаях классическая формула Римана-Роха действительно дает правильные ответы: так она показывает, что размерность пространства многочленов от одной переменной степени не выше Во второй части доклада предполагается популярно изложить недавние работы И. Панина и А. Смирнова. А именно, предполагается (1) изложить новую концептуальную точку зрения на теоремы типа Римана-Роха, сформулировать в общедоступных терминах новую общую теорему типа Римана-Роха и объяснить, почему она справедлива: точные формулировки и доказательства уже доступны по адресу http://www.math.uiuc.edu/K-theory/0552/. (2) продемонстрировать 2-3 частных случая новой общей теоремы: в частности, проверить, что она в одном случае совпадает с классической теоремой Римана-Роха-Хирцебруха в форме Гротендика; в другом случае она совпадает с классической теоремой двойственности Серра; в третьем случае она совпадает с теоремой Баума, Фултона и Мак-Ферсона. |