RUS  ENG
Полная версия
СЕМИНАРЫ



Коммутирующие дифференциальные операторы в частных производных и их алгебро-геометрические спектральные данные

А. Б. Жеглов

Аннотация: В докладе речь пойдет о задачах классификации и явного построения коммутирующих дифференциальных операторов. Обе задачи известны давно, начиная с работ Валленберга, Шура, Бурхнала и Чаунди. Для обыкновенных дифференциальных операторов задача классификации решена благодаря работам Кричевера, в которых центральную роль играет функция Бейкера–Ахиезера — функция, для которой в ряде случаев есть точная формула через тета-функции якобиана спектральной кривой, и у которой есть алгебро-геометрическая интерпретация. В случае операторов в частных производных ситуация намного сложнее. Я планирую рассказать об алгебро-геометрической теории спектральных данных колец коммутирующих дифференциальных операторов и об актуальных проблемах комплексной геометрии, которые там возникают.


© МИАН, 2024