Аннотация:
Байесовский подход является одним из центральных направлений развития современной математической статистики. В данном подходе изучается апостериорное распределение параметров модели, т.е. распределение, получаемое в результате уточнения априорного распределения по результатам наблюдения данных. В этот раз мы обсудим теорему Бернштейна — фон Мизеса, которая утверждает асимптотическую близость апостериорного распределения к нормальному со средним, близким к оценке максимума правдоподобия, и с апостериорной ковариационной матрицей, близкой к обратной информационной матрице Фишера. Эта теорема дает теоретическое обоснование байесовских вычислений оценки максимума правдоподобия и ее ковариации.
|