Аннотация:
Кручение Рейдемейстера было определено в начале 30-х годов. Оно позволяет различать гомотопически эквивалентные, но негомеоморфные многообразия. Это понятие в дальнейшем неоднократно обобщалось разными авторами; например, в 70-е годы Рей и Зингер определили аналитический эквивалент этого кручения, позднее было доказано, что (в хороших случаях) он совпадает с кручением Рейдемейстера (теорема Чигера-Мюллера). В начале 90-х годов Бисмю и Лотт построили аналитическое кручение для семейств многообразий, точнее, для гладкого расслоения с гладким замкнутым многообразием в качестве слоя. Это кручение теперь является не числом, как раньше, а набором классов в когомологиях де Рама базы расслоения. В случае, когда изучаемое расслоение является расслоением сфер комплексного векторного расслоения, было показано, что эти классы тесно связаны с классами Чженя исходного расслоения. В своем докладе я расскажу об основных определениях и результатах этой науки и том, как можно попытаться использовать её идеи и методы для нахождения комбинаторных формул для хар. классов триангулированных расслоений, в частности, для нахождения формул для классов Понтрягина комбинаторных многообразий.
|