RUS  ENG
Полная версия
СЕМИНАРЫ

Автоморфные формы и их приложения
20 июня 2017 г. 18:00, г. Москва, ул. Усачева 6, аудитория 306


Свойство O для нечётных когомологий

С. С. Галкин

Факультет математики, Национальный исследовательский университет «Высшая школа экономики»


https://youtu.be/5-Ot3WsXqD8

Аннотация: Гамма-гипотезы (сформулированные мной с Голышевым и Иритани) связывают асимптотики квантовой связности на когомологиях многообразия Фано с новым характеристическим классом в когомологиях, который называется гамма-классом и строится как класс Хирцебруха по гамма-функции Эйлера. Для того, чтобы первую гамма-гипотезу можно было хотя бы сформулировать, необходимо, чтобы выполнялось так называемое свойство О - некоторые ограничения на кратности собственных значений оператора квантового умножения на первый класс Черна, действующего на когомологиях (эти собственные значения также можно понимать как критические значения зеркальной модели Гинзбурга-Ландау). Гипотеза О утверждает, что свойство О выполнено для всех многообразий Фано.
Я напомню формулировки свойства О и гамма-гипотезы, и объясню, как свойство О и первая гамма-гипотеза для тотальных когомологий следует из свойства О и первой гамма-гипотезы для чётных когомологий, с помощью аргумента, аналогичного аргументу Хертлинга-Манина-Телемана для полупростоты. Более того, достаточно знать, что свойство О выполнено на сумме (p,p)-циклов для какой-нибудь комплексной структуры. По мотивам совместной работы с Хироши Иритани "Gamma-conjecture via mirror symmetry", arXiv:1508.00719.


© МИАН, 2024