RUS  ENG
Полная версия
ВИДЕОТЕКА

Научная сессия МИАН, посвященная подведению итогов 2017 года
29 ноября 2017 г. 15:00, г. Москва, конференц-зал МИАН (ул. Губкина, 8)


Условные меры детерминантных процессов

А. И. Буфетов

Математический институт им. В.А. Стеклова Российской академии наук, г. Москва


https://youtu.be/p_CmnUzUi60

Аннотация: An explicit description is given for conditional measures of determinantal point processes corresponding to integrable kernels in one dimension, including those corresponding to de Branges spaces (joint work with Tomoyuki Shirai), as well as to kernels of orthogonal projection onto generalized Fock spaces (joint work with Yanqi Qiu). The main result is that the conditional measure of our process in a bounded domain with respect to the fixed configuration in the exterior is an orthogonal polynomial ensemble with explicitly found weight. For Bergman spaces in bounded domains, in joint work with Shilei Fan and Yanqi Qiu, it is shown that the determinantal point process is equivalent to its reduced Palm measures.

Список литературы
  1. А. И. Буфетов, “Иерархия Пальма для детерминантных точечных процессов с ядром Бесселя”, Тр. МИАН, 297, 2017, 105–112  mathnet  crossref  mathscinet  elib; A. I. Bufetov, “A Palm Hierarchy for Determinantal Point Processes with the Bessel Kernel”, Proc. Steklov Inst. Math., 297 (2017), 90–97  crossref  mathscinet  isi  scopus
  2. A. I. Bufetov, S. Fan, Y. Qiu, Y., “Equivalence of Palm measures for determinantal point processes governed by Bergman kernels”, Probab. Theory Relat. Fields, 2017 (to appear)  crossref
  3. A. I. Bufetov, “Quasi-Symmetries of Determinantal Point Processes.”, Annals of Probability (to appear) http://www.imstat.org/aop/future_papers.htm
  4. A. I. Bufetov, Tomoyuki Shirai, “Quasi-symmetries and rigidity for determinantal point processes associated with de Branges spaces”, Proc. Japan Acad. Ser. A Math. Sci., 93:1 (2017), 1–5  mathnet  crossref  isi  scopus
  5. Alexander I. Bufetov, Yanqi Qiu, “Conditional measures of generalized Ginibre point processes”, J. Funct. Anal., 272:11 (2017), 4671–4708  mathnet  crossref  isi


© МИАН, 2024