RUS  ENG
Полная версия
СЕМИНАРЫ

Комплексные задачи математической физики
10 апреля 2018 г. 16:00, г. Москва, МИАН, комн. 430 (ул. Губкина, 8)


Предельный спектральный граф в квазиклассическом приближении для несамосопряженной задачи Штурма-Лиувилля

А. А. Шкаликов

Московский государственный университет имени М. В. Ломоносова, механико-математический факультет

Аннотация: Рассматривается задача Штурма-Лиувилля
$$ \varepsilon^2 y'' +q(x, \lambda) y = 0, $$
где $q$ — целая по $x$ и аналитическая по $\lambda$ функция в некоторой области $G \subset \mathbb C$. Здесь $\lambda$ — вообще говоря, нелинейный спектральный параметр (случай $q(x,\lambda) = q(x) -\lambda$ отвечает обычной спектральной задаче), а $\varepsilon$ — физический параметр. Наша цель — изучить поведение спектра этой задачи на отрезке, полуоси, всей оси или кривых в комплексной плоскости (естественно, в случае отрезка или полуоси ставятся краевые условия). Мы покажем, что при $\varepsilon \to 0$ спектр этой задачи локализуется в малой окрестности некоторого множества, называемого нами предельным спектральным графом. Мы укажем уравнения кривых, составляющих предельный спектральный граф и получим формулы распределения собственных значений вдоль этих кривых (формулы квантования). Будет показана связь рассматриваемой задачи с известной в гидромеханике задачей Орра-Зоммерфельда.
Доклад основан на совместных работах с С.Н.Тумановым.


© МИАН, 2024