RUS  ENG
Полная версия
СЕМИНАРЫ

Функциональный анализ и его приложения
19 апреля 2018 г. 10:30, г. Ташкент, Национальный университет Узбекистана, Математический факультет, аудитория А-304, ул. Университетская, 4


Individual ergodic theorem in symmetric ideals of compact operators

A. N. Azizov, V. I. Chilin

National University of Uzbekistan named after M. Ulugbek, Tashkent

Аннотация: Let $H$ be a complex separable infinite-dimensional Hilbert space, let $E$ be a fully symmetric sequence space, and let $\mathcal{C}_E$ be a symmetric ideal of compact operators in $H$ associated with $E$. It is proved that the averages $A_n(T) =\frac1{n + 1}\sum\limits_{k = 0}^n T^k $ for any positive Dunford-Schwartz operator $T: \mathcal{C}_E \to \mathcal{C}_E$ converge in $\mathcal{C}_E$ with respect to the uniform norm. In addition, we show that for every non-compact bounded linear operator $x$ acting in $H$ there exists a positive Dunford-Schwartz operator $T$ such that the averages $A_n(T)$ do not convergence with respect to the uniform norm.

Язык доклада: английский


© МИАН, 2024