RUS  ENG
Полная версия
СЕМИНАРЫ

Научный семинар «Актуальные проблемы геометрии и механики» имени проф. В. В. Трофимова
27 мая 2011 г. 18:30, г. Москва, Механико-математический факультет МГУ, ауд. 1311


Сопоставление случаев полной интегрируемости в динамике $2D$-, $3D$- и $4D$-твердого тела в неконсервативном поле

М. В. Шамолин

Аннотация: Исследованию случаев полной интегрируемости уравнений движения четырехмерного твердого тела посвящено огромное количество работ. Автор не претендует в данном вопросе на первенство, хотя при исследовании “маломерных” уравнений движения вполне конкретных (двумерных и трехмерных) твердых тел в неконсервативном поле сил пришла идея обобщить уравнения на случай движения четырехмерного твердого тела в аналогично построенном поле.
В результате такого обобщения получились несколько случаев интегрируемости в задаче о движении тела в сопротивляющейся среде, заполняющей четырехмерное пространство, при наличии некоторой следящей силы, позволяющей методическим образом понизить порядок общей системы динамических уравнений движения.
В предлагаемой работе обобщаются некоторые известные ранее результаты по интегрированию двумерного и трехмерного твердых тел, находящихся под действием неконсервативного момента сил, а также исследуются уравнения движения динамически симметричного четырехмерного твердого тела в одном из двух логически возможных случаях — в зависимости от расстановки главных моментов инерции. Структура таких уравнений движения в некотором смысле сохраняется при переносе на случаи большей размерности.


© МИАН, 2024