|
СЕМИНАРЫ |
|
Преобразования Дарбу–Мутара и их применения к спектральной теории и нелинейным уравнениям И. А. Тайманов |
|||
Аннотация: Доклад посвящен открытым в конце XIX века методам решения дифференциальных уравнений, называемым преобразованиями Мутара и Дарбу. Впоследствии они успешно применялись к задачам спектральной теории и к солитонным уравнениям и находят новые приложения по сей день. Преобразование Мутара позволяет строить по уравнению от двух переменных вида Преобразование Дарбу является одномерной редукцией преобразования Мутара и переоткрывалось много раз по мере нахождения его применений к задачам спектральной теории (точно решаемые одномерные операторы Шредингера и обратная задача рассеяния), математической физики, солитонным уравнениям. В докладе будет рассказано о некоторых применениях преобразования Мутара к спектральной теории — построении двумерных операторов Шрёдингера с быстро убывающим потенциалом и нетривиальным ядром — а также солитонным уравнениям — построении примеров решений уравнения Веселова–Новикова, двумеризации уравнения Кортевега–де Фриза, разрушающихся за конечное время. |