|
СЕМИНАРЫ |
Заседания Московского математического общества
|
|||
|
Кольца Кокса и алгебраические группы преобразований И. В. Аржанцев |
|||
Аннотация: Известно, что проективное пространство можно получить профакторизовав открытое множество ненулевых векторов в векторном пространстве по действию одномерного алгебраического тора. При этом однородные элементы одной степени в кольце многочленов на векторном пространстве образуют систему однородных координат проективного пространства. Эти наблюдения были обобщены в известной конструкции Д. Кокса (1995) для торических многообразий. Дальнейшее обобщение позволило сопоставить каждому нормальному алгебраическому многообразию Конструкция Кокса нашла много интересных применений в алгебраической геометрии, комбинаторике и активно развивающейся в последние годы торической топологии. Мы остановимся на приложениях конструкции Кокса к теории алгебраических групп преобразований. Среди прочего, будет дано комбинаторное описание проективных многообразий с «почти транзитивным» действием алгебраической группы, т.е. действием, дополнение до открытой орбиты которого имеет коразмерность не меньше двух. Доклад частично основан на совместных результатах с Ю. Хаузеном (Тюбинген, Германия). |