|
СЕМИНАРЫ |
Семинары отдела математической логики "Теория доказательств" и "Logic Online Seminar"
|
|||
|
Glivenko's theorem, finite height, and local finiteness И. Б. Шапировский |
|||
Аннотация: The well-known Glivenko's theorem (1929) states that a formula is derivable in the classical propositional logic CL iff under the double negation it is derivable in the intuitionistic propositional logic IL. Modal analog of this theorem translates In Kripke semantics, the intuitionistic propositional logic is the logic of partial orders; the classical propositional logic is the logic of partial orders of height 1. Likewise for logics In this talk I will generalize Glivenko's theorem for the case of arbitrary finite height. Namely, for a logic arxiv.org/pdf/1806.06899.pdf |