|
СЕМИНАРЫ |
|
Инвариант двухмерных зацеплений со значением в алгебре Конвея С. Ким Московский государственный технический университет имени Н. Э. Баумана |
|||
Аннотация: Известно, что двумерное зацепление соответствует граф-диаграмме с метками с точностью до движений Yoshikawa. Так как разведением всех меток в граф-диаграмме с метками получается диаграмма классического зацепления, то может быть построен инвариант двумерных зацеплений, используя инвариант классических зацеплений со значением в полиномах от одной переменной, см. Y.Joung, S.Kamada, A.Kawauchi and S.Y.Lee, Polynomial of an oriented surface-link diagram via quantum С другой стороны в 1987 году Пржитицкий и Трачик построили инвариант ориентированных классических зацеплений со значениями в алгебраической структуре, называемой алгеброй Конвея. Известно, что Homflypt полином, который является сильным инвариантом в теории узлов, следует из инварианта со значением в алгебре Конвея. В докладе рассматривается обобщение алгебры Конвея, чтобы построить инвариант двухмерных зацеплений со значением в обобщенной алгебре Конвея. |