Аннотация:
Рассматриваются гладкие, компактные, замкнутые, ориентированные $2n$-мерные многообразия $M^{2n}$ с эффективным действием компактного тора $T^k$. Предполагается, что все неподвижные точки действия изолированы. В докладе мы обсудим основополагающие аксиомы нашей теории. Главная цель — показать, что структурные данные, определяемые этими аксиомами, позволяют описать эквивариантную топологию многообразий $M^{2n}$ и топологический тип пространств орбит $M^{2n}/ T^k$.
Число $d=n-k$ называется сложностью $(2n,k)$-многообразия. Наша теория охватывает торическую геометрию и торическую топологию при $d=0$. Несколько лет назад мы показали эффективность обсуждаемого подхода на действиях сложности $d=1$.
В центре нашего внимания комплексные многообразия Грассмана и комплексные многообразия флагов. Особо выделим многообразия Грассмана $G(k+1,2)$, $k >2$, с эффективным действием тора $T^k$. Они представляют $(2n,k)$-многообразия сложности $k-2$, которым посвящено много работ в связи с пространствами модулей кривых.
Все необходимые определения будут даны в ходе изложения.
|