|
СЕМИНАРЫ |
Алгебро-геометрические методы в интегрируемых системах и квантовой физике
|
|||
|
Специальная бор - зоммерфельдова геометрия: общая теория и алгебраический случай Н. А. Тюрин |
|||
Аннотация: Бор - зоммерфельдова геометрия компактных односвязных симплектических многообразий выросла из конструкций Геометрического квантования: лагранжево подмногообразие удовлетворяет условию Бора - Зоммерфельда если при ограничении на него связность предквантования допускает ковариантно постоянные сечения. В 1999 году А. Тюрин и А. Городенцев построили многообразие модулей бор -зоммерфельдовых лагранжевых подмногообразий, которое затем было использовано в новом, лагранжевом, подходе к Геометрическому квантованию. Недавно было замечено, что эта конструкция может быть развита введением условия специальности для бор - зоммерфельдовых подмногообразий. В результате было построено пространство специальных бор - зоммерфельдовых подмногообразий и доказано, что это пространство является кэлеровым в слабом смысле. Основной интерес – применить эту конструкцию к алгебраическим многообразиям и получить конечномерные модули, представляемые лагранжевыми подмногообразиями. Однако оказалось, что прямой подход тут не работает: специальные бор - зоммерфельдовы относительно голоморфных сечений подмногообразия почти всегда особы. Однако в простейших случаях все же можно определить многообразие модулей специальных бор - зоммерфельдовых лагранжевых подмногообразий и в алгебраическом случае. Website: https://www.youtube.com/watch?v=-8tqRWQCiZI&feature=youtu.be |