|
СЕМИНАРЫ |
Семинар отдела алгебры и отдела алгебраической геометрии (семинар И. Р. Шафаревича)
|
|||
|
Квантовая гомологическая алгебра (на языке Баталина-Вилковысского) и максимальная суперсимметричная теория Янга-Миллса А. С. Лосев |
|||
Аннотация: Первая часть рассказа будет посвящена языку Баталина-Вилковысского и формулировке понятия "квантовая гомологическая алгебра" , при которой бесконечность-структуры разного рода возникают как "классические пределы" квантовой формулировки, а формулы для их индуцирования при стягивании ациклического подкомплекса - как суммы по диаграммам Фейнмана. В этом смысле "квантовая гомологическая алгебра" является по сути топологической струной "типа В". Во второй части рассказа будет обсуждаться предложенная Ниельсоном и развитая в последующих работах гомологическая конструкция, индуцирующая максимальную суперсимметричную теорию Янга-Миллса. В частности "поля Янга-Миллса" - это кручения для пары модулей над кольцом полиномов от 16 переменных (эти 16 переменных - элементы спинорного представления SO(10)), индуцированная унарная операция - "суперсимметричная пара уравнений Максвелла и Дирака". Поскольку рассматриваемые модули являются еще и коммутативными алгебрами, после умножения на какую-нибудь алгебру Ли они дают дифференциально-градуированную алгебру Ли, и индуцированная L-бесконечность структура уже оказывается уравнениями движения суперсимметичной теории Янга-Миллса. |