RUS  ENG
Полная версия
СЕМИНАРЫ

Математический коллоквиум МГТУ
7 мая 2020 г. 17:45, г. Москва, Доклад будет организован в виде Zoom-видеоконференции


Наследственно полные системы в пространствах функций

А. Д. Баранов



Аннотация: Пусть система векторов $x_n$ полна и минимальна в гильбертовом пространстве $H$. Будем говорить, что эта система наследственно полна, если каждый вектор в $H$ может быть аппроксимирован по норме линейными комбинациями частичных сумм его ряда Фурье по системе $x_n$. В течение многих лет оставалась открытой задача о наследственной полноте для систем экспонент в пространстве $L^2(-a,a)$. Несколько лет назад эта задача была решена в отрицательном смысле в совместной работе с Ю. Беловым и А. Боричевым. Таким образом, существуют негармонические ряды Фурье, не допускающие линейного метода суммирования. В то же время, любая экспоненциальная система наследственно полна с точностью до одномерного дефекта. В докладе мы обсудим также сходные задачи для систем воспроизводящих ядер в гильбертовых пространствах целых функций (таких как пространства Пэли-Винера, де Бранжа, Фока). Доклад основан на совместных работах с Ю. Беловым (С.-Петербург) и А. Боричевым (Марсель).

Идентификатор Zoom-конференции: 879 4067 9912; Пароль: 030705

Website: https://us02web.zoom.us/j/87940679912?pwd=ZlpPdi9UTE1hNmJaUDZCbzZiejlvZz09


© МИАН, 2024