RUS  ENG
Полная версия
СЕМИНАРЫ

Современные проблемы теории чисел
14 мая 2020 г. 12:45, г. Москва, ZOOM


О множестве A(A+A)

А. С. Семченков

Московский физико-технический институт (национальный исследовательский университет), Московская облаcть, г. Долгопрудный

Аннотация: Пусть $p$ — достаточно большое простое число. Когда $A$ является подмножеством $\mathbb{F}_p\setminus\{ 0\}$ мощности $|A| > (p+1)/3$, то применение неравенства Коши-Дэвенпорта дает $\mathbb{F}_p\setminus\{ 0\} \subseteq A(A+A)$. Наша задача: выяснить при каком минимальном $0 < \alpha < 1$ верно, что если $|A| = \alpha p$, то всегда выполнено включение $\mathbb{F}_p\setminus\{ 0\} \subseteq A(A+A)$. В работе https://arxiv.org/pdf/1811.08869.pdf (Pierre-Yves Bienvenu, Francois Hennecart, and Ilya Shkredov) было доказано, что такое $\alpha$ лежит в отрезке $[0.125, 0.3051]$. В предстоящем докладе мы собираемся усилить верхнюю оценку на $\alpha$ до $\alpha < 0.256$. Идентификатор конференции: 871 3289 5644 Пароль: 025413


© МИАН, 2024