RUS  ENG
Полная версия
СЕМИНАРЫ

Стохастика
24 декабря 2010 г. 15:30, г. Санкт-Петербург, ПОМИ, ауд. 106 (наб. р. Фонтанки, 27)


Условные предельные теоремы для случайных блужданий и сходимость случайных деревьев I

В. В. Высоцкий

Аннотация: В первой части доклада будет дан краткий и очевидно неполный обзор условных функциональных предельных теорем для случайных блужданий. Одним из возможных предельных процессов является броуновская экскурсия, для которой мы дадим удобное “безусловное” описание в терминах винеровского процесса.
Во второй части речь пойдет о случайных деревьях. При помощи нехитрой биекции множество всех деревьев с корнем и $n$ вершинами приводится в соответствие так называемым путям Дика длины $2n$. Полагая, что элементы каждого множества равновероятны, мы приходим к соответствию между такими случайными деревьями и положительной экскурсией простого случайного блуждания длины $2n$. Поскольку предельным случаем последних является броуновская экскурсия, естественно определить соответствующее ей “непрерывное” случайное дерево Альдуса (Aldous' continuum random tree). Если позволит время, мы обсудим, в каком смысле можно говорить о слабой сходимости случайных деревьев к упомянутому пределу.
Цикл докладов


© МИАН, 2024