RUS  ENG
Полная версия
ВИДЕОТЕКА



Free Variations on the (eternal) Theme of Analytic Continuation

Д. Хавинсон

University of South Florida, Department of Mathematics



Аннотация:
Between two truths of the real domain, the easiest and shortest path quite often passes through the complex domain.”                               P. Painlevé, 1900



– When does the Taylor series $\sum a_nz^n $ represent a rational, or an algebraic function? Why does the Taylor series $\sum\cos\sqrt{n}z^n$ extend to the whole complex plane except for the point 1, while $ \sum 2^{-n}z^{n^2}$ does not extend anywhere beyond the unit circle?
– How far does the Newtonian potential of a solid (or, the logarithmic potential of a plate) bounded by an algebraic surface (curve)extend inside the solid? How come the singularities of such potential are algebraic for an ellipse and an oblate spheroid and transcendental for a prolate spheroid?
– How does one find singularities of an axially symmetric harmonic function in the ball from the coefficients in its expansion in spherical harmonics?
– If a line intersects a spherical shell over two disjoint segments and a harmonic function in the shell vanishes on one, does it have to vanish on the other one?
– Where does the solution of the Dirichlet problem in a domain with algebraic boundary might have a singularity outside the domain?
We shall discuss these questions in the unified light of analytic continuation, and, in particular, analytic continuation of solutions to analytic PDE.

Website: https://ruhr-uni-bochum.zoom.us/j/97741434694?pwd=L1RaMGpEODY1dFpvRHZ4eGFQNzZ6Zz09

* Идентификатор конференции: 977 4143 4694. Пароль: 045382.


© МИАН, 2024