|
СЕМИНАРЫ |
Характеристические классы и теория пересечений
|
|||
|
Моделирование двумостовых узлов в пространствах постоянной кривизны А. Д. Медных |
|||
Аннотация: We investigate the existence of hyperbolic, spherical or Euclidean structure on cone-manifolds whose underlying space is the three-dimensional sphere and singular set is a given two-bridge knot. For two-bridge knots with not more than 7 crossings we present trigonometrical identities involving the lengths of singular geodesics and cone angles of such cone-manifolds. Then these identities are used to produce exact integral formulae for the volume of the corresponding cone-manifold modeled in the hyperbolic, spherical and Euclidean geometries. |