RUS  ENG
Полная версия
СЕМИНАРЫ

Характеристические классы и теория пересечений
26 ноября 2020 г. 18:00, г. Москва, Трансляция в зум: https://zoom.us/j/91320547767?pwd=bXJHbUtOYXUrSTBnS01hNndXZ0dRdz09


Моделирование двумостовых узлов в пространствах постоянной кривизны

А. Д. Медных


https://www.youtube.com/watch?v=EH-WLM6gF14

Аннотация: We investigate the existence of hyperbolic, spherical or Euclidean structure on cone-manifolds whose underlying space is the three-dimensional sphere and singular set is a given two-bridge knot. For two-bridge knots with not more than 7 crossings we present trigonometrical identities involving the lengths of singular geodesics and cone angles of such cone-manifolds. Then these identities are used to produce exact integral formulae for the volume of the corresponding cone-manifold modeled in the hyperbolic, spherical and Euclidean geometries.


© МИАН, 2024