RUS  ENG
Полная версия
ВИДЕОТЕКА

International Workshop "Hilbert $C^*$-Modules Online Weekend" in memory of William L. Paschke (1946–2019)
6 декабря 2020 г. 11:45, г. Москва, МГУ им. М. В. Ломоносова


Pre-Hilbert modules, normed modules and the parallelogram law

D. Ilišević

University of Zagreb



Аннотация: The concept of pre-Hilbert $C^*$-module generalizes the concept of pre-Hilbert (inner product) space. A normed $C^*$-module can be analogously introduced as a generalization of a normed space (by equipping a module over a $C^*$-algebra with a map that obeys the same axioms as the vector space norm but with values in a $C^*$-algebra). The aim of this talk is to show that the parallelogram law holds in every normed module over a $C^*$-algebra $A$ without nonzero commutative closed two-sided ideals and that this implies that the class of normed $A$-modules coincides with the class of pre-Hilbert $A$-modules.

Язык доклада: английский


© МИАН, 2024