RUS  ENG
Полная версия
СЕМИНАРЫ

Общегородской семинар по математической физике им. В. И. Смирнова
15 марта 2021 г. 16:30, г. Санкт-Петербург, онлайн-конференция в zoom


О регулярности $p(x)$-гармонических функций.

М. Д. Сурначев

Институт прикладной математики им. М.В. Келдыша Российской академии наук, г. Москва


https://youtu.be/Y5dfdW0uuTg

Аннотация: Доклад основан на совместной работе с Ю.А. Алхутовым (ВлГУ). Будет представлен ряд результатов о регулярности решений дивергентных эллиптических уравнений типа p(x)-Лапласиана. Большинство хорошо известных фактов для решений уравнений такого типа (так же как и в теории соответствующих функциональных пространств) требует по крайней мере "логарифмической гёльдеровости" показателя нелинейности p(x). Мы работаем с теми случаями, когда это условие не выполнено. Во-первых, нас интересует ситуация, когда показатель p(x) разрывен, но имеет чёткую геометрическую структуру. Во-вторых, мы изучаем уравнения с показателем p(x), обладающим модулем непрерывности хуже логарифмического. Особое внимание уделяется случаю показателя, непрерывного лишь в рассматриваемой точке.


© МИАН, 2024