Аннотация:
Имеется большой запас примеров пространств $X$ с инволюцией $\tau$, для которых $\mod 2$ кольца когомологий $H^{2*}(X)$ и $H^*(X^\tau)$ изоморфны. Хаусман, Хольм и Пуппе показали, что такой изоморфизм часто является частью некоторой новой структуры на эквивариантных когомологиях пространства $X$ и неподвижных точек $X^\tau$, которое они назвали $H$-оснащением. Простейшими примерами служат комплексные грассманианы и комплексные многообразия флагов, рассматриваемые с комплексным сопряжением.
В докладе будет введено понятие $Q$-оснащение, которое возникает в ситуации, когда пространство $X$ снабжено парой коммутирующих инволюций $\tau_1,\tau_2$, а $\mod 2$ кольца когомологий $H^{4*}(X)$ и $H^*(X^{\tau_1,\tau_2})$ изоморфны. Мотивирующими примерами служат кватернионные грассманианы и многообразия флагов. Мы доказываем естественности и единственность $Q$-оснащения. Показываем, что $Q$-оснащение может быть построено для прямых пределов, произведений, и т.п. пространств с заданным $Q$-оснащением. Этот список операций включает приклейку диска из $\H^n$ с комплексными инволюциями $\tau_1$ и $\tau_2$ к $Q$-оснащенному пространству по эквивариантному приклеивающему отображению граничной сферы.
Важной составной частью $H$-оснащения в работе Х.–Х–П. служит так называемое уравнение сопряженности. Франц и Пуппе вычислили коэффициенты этого уравнения в терминах квадратов Стинрода. Наше определение $Q$-оснащения также содержит соответствующее структурное уравнение — кватернионное уравнение сопряженности. Мы вычисляем его коэффициенты через действие операций Стинрода.
|