|
СЕМИНАРЫ |
Когомологические аспекты геометрии дифференциальных уравнений
|
|||
|
Operations on universal enveloping algebra and the "argument shift" method [Операции на универсальной обёртывающей алгебре и метод "сдвига аргумента"] Г. И. Шарыгин |
|||
Аннотация: Если на пуассоновом многообразии М задано векторное поле Х, такое, что квадрат производной Ли в направлении Х "убивает" пуассонов бивектор, то имеется хорошо известный простой метод "сдвига аргумента" (вдоль Х) построения коммутативной подалгебры (относительно скобки Пуассона) в алгебре функций на М. В частном случае этот метод применим к скобке Пуассона-Ли на симметрической алгебре произвольной алгебры Ли и выдаёт (согласно известному результату - доказанной гипотезе Мищенко-Фоменко) максимальные коммутативные подалгебры в симметрической алгебре. Однако, подъём этих алгебр до коммутативных подалгебра в универсальной обёртывающей алгебре, хотя и возможен, основан на весьма нетривиальных результатах из теории бесконечно-мерных алгебр Ли. В своём рассказе я опишу частичные результаты, позволяющие построить на универсальной обёртывающей алгебре алгебры Язык доклада: английский |