|
ВИДЕОТЕКА |
Complex Approximations, Orthogonal Polynomials and Applications Workshop
|
|||
|
Analytic continuation of the multiple hypergeometric functions S. I. Bezrodnykh Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, Moscow |
|||
Аннотация: A wide class of hypergeometric functions in several variables $\mathbf{z} = (z_1, z_2, \dots, z_N) \in \mathbb{C}^N$ is defined with the help of the Horn series [1–3], which has the form: $$ \Phi^{(N)} (\mathbf{z}) = \sum\nolimits_{\mathbf{k} \in \mathbb{Z}^N} \Lambda(\mathbf{k}) \mathbf{z}^\mathbf{k}; \,(1) $$ here The talk describes the approach proposed in [4] for deriving formulas for the analytic continuation of series (1) with respect to the variables $$ F_D^{(N)}\, (\mathbf{a}; b, \, c;\, \mathbf{z})\,:=\,\sum_{|\mathbf{k}| = 0}^{\infty}\,\frac{(b)_{|\mathbf{k}|} (a_1)_{k_1} \cdots (a_N)_{k_N}}{(c)_{|\mathbf{k}|} k_1! \cdots k_N!}\,\mathbf{z}^\mathbf{k}\,; \,(2) $$ here the complex values In [7], we have constructed a complete set of formulas for the analytic continuation of series (1) for an arbitrary $$ \begin{split} &z_j (1 - z_j) \frac{\partial^2 u}{\partial{z_j}^2} + (1 - z_j) \sideset{}{'}\sum\nolimits_{k = 1}^N z_k \frac{\partial^2u}{\partial z_j \partial z_k}\, +\\ + \Big[c - (1 + a_j& + b) z_j\Big] \frac{\partial u}{\partial z_j} -\, a_j \sideset{}{'}\sum\nolimits_{k = 1}^N z_k\, \frac{\partial u}{\partial z_k}\, -\, a_j b\, u = 0,\qquad j = \overline{1,N}, \end{split} $$ which the function We give an application of the obtained results on the analytic continuation of the Lauricella function The work is financially supported by RFBR, proj. 19-07-00750. Язык доклада: английский Website: https://us02web.zoom.us/j/8618528524?pwd=MmxGeHRWZHZnS0NLQi9jTTFTTzFrQT09 * Zoom conference ID: 861 852 8524 , password: caopa |