RUS  ENG
Полная версия
СЕМИНАРЫ



Iterates of random monotone maps and coalescing processes

К. М. Ханинab

a Department of Mathematics, University of Toronto
b Институт проблем передачи информации им. А.А. Харкевича Российской академии наук, г. Москва

Аннотация: We study the rate of convergence of the iterates of iid random piecewise constant monotone maps to the time-1 transport map for the process of coalescing Brownian motions. We prove that the rate of convergence is given by a power law. The time-1 map for the coalescing Brownian motions can be viewed as a fixed point for a natural renormalization transformation acting in the space of probability laws for random piecewise constant monotone maps. Our result implies that this fixed point is exponentially stable.
Zoom-подключение см. на сайте семинара: http://iitp.ru/ru/userpages/74/285.htm


© МИАН, 2024