RUS  ENG
Полная версия
СЕМИНАРЫ

Некоммутативная геометрия и топология
3 ноября 2022 г. 16:45, г. Москва, Доклад состоится через ZOOM


К гипотезе Эйлера о неизгибаемости компактных поверхностей

И. Х. Сабитов


https://youtu.be/Woh7fluRKu4

Аннотация: В 1862 г. в посмертном томе трудов Эйлера в разделе “Геометрия” была опубликована его работа под номером 97, написанная в 1770-х годах, где ставится вопрос о существовании такого преобразования двух поверхностей друг в друга, при котором соответствующие точки имели бы на них одинаковые расстояния между собой. т.е. преобразования, которое сейчас называется изометрическим. В конце статьи он предположил, что если фигура ограниченная и отовсюду замкнутая, то она не допускает таких изменений, только если она не терпит разрыв, приводя в пример сферу, хотя определение таких изменений в случае, например, полусферы, представляет собой, по его мнению, сложнейшую проблему. Мы покажем, что постановка задачи нуждается в уточнениях как в предположениях о классе регулярности исходной поверхности, так и в требованиях на допустимые деформации, и опишем некоторые классы неизгибаемых компактных поверхностей (кроме выпуклых, конечно).
Идентификатор конференции: 844 3430 3199 Код доступа: 991937


© МИАН, 2024