RUS  ENG
Полная версия
СЕМИНАРЫ

Beijing–Moscow Mathematics Colloquium
11 ноября 2022 г. 11:00, г. Москва, online


Kaehler-Ricci flow on Fano G-manifolds

X. Zhu

Peking University, Beijing

Аннотация: I will talk about a recent work jointly with Tian on Kaehler-Ricci flow on Fano G-manifolds. We prove that on a Fano G-manifold, the Gromov-Hausdorff limit of Kaehler-Ricci flow with initial metric in $2\pi c_1(M)$ must be a Q-Fano horosymmetric variety which admits a singular Keahler-Ricci soliton. Moreover, we show that the complex structure of limit variety can be constructed by a $C^*$-degeneration induced by an element in the Cartan torus Lie algebra of G. A similar result can be also proved for Kaehler-Ricci flows on any Fano horosymmetric manifolds.

Язык доклада: английский


© МИАН, 2024